Spike-Timing Error Backpropagation in Theta Neuron Networks

نویسندگان

  • Sam McKennoch
  • Thomas Voegtlin
  • Linda Bushnell
چکیده

The main contribution of this letter is the derivation of a steepest gradient descent learning rule for a multilayer network of theta neurons, a one-dimensional nonlinear neuron model. Central to our model is the assumption that the intrinsic neuron dynamics are sufficient to achieve consistent time coding, with no need to involve the precise shape of postsynaptic currents; this assumption departs from other related models such as SpikeProp and Tempotron learning. Our results clearly show that it is possible to perform complex computations by applying supervised learning techniques to the spike times and time response properties of nonlinear integrate and fire neurons. Networks trained with our multilayer training rule are shown to have similar generalization abilities for spike latency pattern classification as Tempotron learning. The rule is also able to train networks to perform complex regression tasks that neither SpikeProp or Tempotron learning appears to be capable of.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Learning Precise Spike Train-to-Spike Train Transformations in Multilayer Feedforward Neuronal Networks

We derive a synaptic weight update rule for learning temporally precise spike train-to-spike train transformations in multilayer feedforward networks of spiking neurons. The framework, aimed at seamlessly generalizing error backpropagation to the deterministic spiking neuron setting, is based strictly on spike timing and avoids invoking concepts pertaining to spike rates or probabilistic models...

متن کامل

Error-backpropagation in temporally encoded networks of spiking neurons

For a network of spiking neurons that encodes information in the timing of individual spike-times, we derive a supervised learning rule, SpikeProp, akin to traditional error-backpropagation. With this algorithm, we demonstrate how networks of spiking neurons with biologically reasonable action potentials can perform complex non-linear classification in fast temporal coding just as well as rate-...

متن کامل

Learning in Silicon: Timing is Everything

We describe a neuromorphic chip that uses binary synapses with spike timing-dependent plasticity (STDP) to learn stimulated patterns of activity and to compensate for variability in excitability. Specifically, STDP preferentially potentiates (turns on) synapses that project from excitable neurons, which spike early, to lethargic neurons, which spike late. The additional excitatory synaptic curr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2009